CS 115 A First Look at Python

Taken from notes by Dr. Neil Moore

Getting Python and Wing|DE

Instructions for installing Python and WingIDE 101
are on the web page:

http://www.cs.uky.edu/~keen/help/installingpython.html

We'll use WinglIDE today.

Hint: use a big font (18 or 20 point) for labs! It is
easier both for us and for your teammates to read
it! The simplest way is Control + plus to make
bigger.

http://www.cs.uky.edu/%7Ekeen/help/installingpython.html

Structure of a Python program

e« def main():

— This is the first line of the “main function” where the
program does all its work
e For now

— More about functions in a few weeks

— Python does not need a main function, but use on in all
code in this class!

e It’s good practice for later.
* Indentation and blocks
— Code is arranged in indented blocks.

— The body of the main function is one block.
— It can have several blocks inside it.

Structure of a Python program

e The lastline in the file is main()
— This is the call to the main function.
— It is not inside the main function!

e The line (the call) is not indented at all!

— If you forget this line, the program does nothing
when run!

Documentation (Comments)

Syntax: Comments in Python start with a # character and
extend to the end of the line.

— A variant of a comment starts and ends with 3 single quotes.
This version can include multiple lines, even paragraphs or

pages.
Semantics: Does nothing: ignored by the Python interpreter
entirely.
Why would we want to ignore any code?

Comments are for humans, not the computer.
— Your teammates

— Your boss (or instructor or grader ...)
* You can communicate with your grader while they are grading!

— Yourself next week! Or next month!

Where to use comments

Comments don’t usually need to say how you are doing
something or what you are doing.

— That is what the code is for. Don’t repeat the code in the
comments

Instead, they should say why something is done.
— BAD: counter=0 # set counterto zero
— GOOD: counter=0 # initialize number of lines

If the comment is long, put it on a line of its own
before the code statement.

— That way you don’t have to scroll horizontally to read it all.
* In general, try to keep code lines less than 80 characters.
e Less than that on team labs, where you are using a big font.

Where to use comments

Not every line of code needs its own comment

A block of code can be summarized by one
comment

Every control structure (loops, if statements)
deserves a comment

Any “tricky” code deserves a comment

Header Comments

— Name, email, section number
— Purpose of the program

— Preconditions: inputs to the program

 And what the program assumes is true about the inputs
— Postconditions: outputs of the program

 And what you can guarantee about the outputs
— Reference(s) or Citations when you received or gave

assistance

e TA Name and email

e Tutor Name and email

e Partner’s name and email and section

 URL and date you read the page

Kinds of Errors

Here’s a simple program — it has several errors.
Def main():
X = nt(input(“enter a number “))
X = X + 1 # X should be Increased
by 10
print(x)
Main()
— Syntax errors
— Semantic (logic) errors
— Run-time errors

Syntax errors

e Syntax is the set of rules that say how to write
statements in the language

— Misspelling, incorrect punctuation, words in the
wrong order, etc. are syntax errors

— Humans can probably figure out what you meant
when you have syntax errors in English (e.g., text
messages — misspellings, missing words, no
punctuation, etc. but we can still understand them)

— Programming languages are very rigid about syntax
rules — if one exists, the interpreting stops!

— For computers, getting the meaning if the syntax s
wrong is nearly impossible!

Syntax errors

 The interpreter will give you an error message for
the first syntax error.
— Translator programs are NOT “smart” . Their

indication of where they think the error is is not
always right.

— If they say it’s in line 10, make sure to look in line 9 or
gor7/..

— Don’t bother to look after the line they indicate (like
line 11 or12...).

— If there are comments between lines, skip those and
look above them.

Semantic errors

e Also known as logic errors

e Semantics = meaning

— The semantics of a program is what does it make the
computer do when it is executed: what changes does
it make in memory, what does it output...

A semantics error is usually the program not
doing what you want it to do
— It always does what you tell it to!
— Maybe you multiplied instead of dividing
— Or you used the wrong variable or constant

Semantic errors

 The interpreter won’t detect these for you!

e So how do we find them?
— Testing!

— Making a test plan: what to test, provided input,
expected output.

— Coming up with a good set of test cases is one of
the important parts of programming

— By writing up test cases, you have to dig in and
understand the desired behavior of the program

Run-time errors

These occur when the program or interpreter encounters a situation it
can’t handle

— Usually causes the program to halt with an error message, it “crashes”
— It’s not detected until the situation actually happens!
Often caused by the environment (operating system):
— Afileis not found
— Network connection closed
— A storage device runs out of room
Sometimes they are caused by programming errors:
— Using a string where a number was expected
— Using an undefined variable
— Dividingby zero
Some languages allow for catching and handling these errors by using
exception handling (We’ll do a bit at the end of the semester)

Run-time errors

For the present time, we will not worry about the
errors caused by the environment

If your program needs a positive number to
operate correctly and the user inputs something
else, right now it is alright for the program to
crash

Your documentation should state the
expectations of the program

As you learn more of the language, you will learn
how to catch these errors in friendlier ways

Fixing bugs

e Let’s fix the bugsin our program
— Syntax error: misspelled keyword
— Syntax error: name ‘Main’ not defined
— Semantic error: wrong constant for adding to x
— Run-time error: input is a string, not a number

Variables

e A variable is a “slot” or “holder” or “location”
that refers to a value

— a and b were variables in our program
— A value is something like 42 or “Hello”
— Variables are stored in RAM

— They can refer to different values as the program runs
(they are “able to vary”)

e Assignment (the equals sign) makes a variable refer to a new
value

— A variable is a fundamental building block of most
programming languages.

Properties of a variable

It has a name — one that means something

— Also called an “identifier”

It has a value — what value is in the variable

— In Python, the value of a variable is an object.

It has a type — what kind of value

— Integer, string, floating-point number, boolean, ...

It has a scope — where in the program is the name valid
or accessible?

— In Python, scope goes from the definition of the variable to
the end of the block that the definition is in.

— Can have variables with the same name as long as their
scopes don’t overlap. They’re entirely unrelated variables!

Rules for Identifiers

 Anidentifieris a sequence of letters, digits
and underscores () used as a label

— “Alphanumeric” characters (“A..Za..z0..9”)

— Case sensitive: students and Students and
STUDENTS are all different labels in Python

— |t cannot start with a digit (Python thinks that it is
a number, although a badly formatted number)

— Cannot be a reserved word (if, while, else, etc.)
 These are usually dark blue in WingIDE.

Rules for Identifiers

e Valid examples: x, size, name2, long name,
CamelCase, ugly (can start with an underscore)

e BAD: 2bad4u, no spaces, no-punctuation!

e Just because it’s legal doesn’t mean it’s a good
name.

— Avoid single-letter variables

e Except in loop counters or simple math equations

— And names like “thing” and “number” aren’t any
better — they don’t say what they mean

— Better names are “lineCounter” or “num_students”

The Assignment operator

Syntax: variable = expression
— Must be a single variable on the left (for now)

Semantics: Calculates the value of (evaluates) the right hand
side (RHS) then uses that value to change (replace) the value
of the variable on the left hand side (LHS).

This statementis not the same thing as an equation in math!
— In math, x = x + 1 has no sensible solution
— But in Python, x =x + 1 means “add 1 to x”.
— Instead of “equals”, it’s better to read it as “gets” or ...
— “Assign x + 1 to x” or “Assign x with x + 1”.

Although it looks trivial, it is where much of the processing of
the program takes place! It is the most used statementto
manipulate items in memory.

The Assignment operator

e Orderin the statement matters!
— The two steps are always done in the same order
— First evaluate the right hand side
— Then change only the variable on the left hand side
— X+ 1 =x#Syntax Error!
e |f the LHS variable doesn’t already exist in this scope, it
is created.
— “Initialization”: give a variable its initial value
e Rule of Thumb: a variable has to appear on the left

hand side of an assignment before it appears on the
right hand side (not 100% true but very nearly)

Example of assighment: swapping

Suppose we have two variables and want to swap their
values. This means that each variable’s new value is the
other variable’s old value.

e The code should look something like this:
X = 10
y = 42
do something
print(x, y) # should print 42 10

e Will this work?
X =Y
y = X
print(x, y)
e Nolitprintsout 42 42 We lost the old value of x!

Two Solutions to swapping

 This one worksin any language
— You need a third variable (temp)
temp =X
X =y
y=temp
 This one works only in Python but it’s cute!

X, Y=Y X
It works by making “implicit tuples” on each side

and assigning corresponding values to variables on
the left hand side.

Can variable properties change?

The name and scope of a variable never change.
— If you think it did, it’s actually a different variable

In a “dynamically typed” language like Python, the value and type of
a variable can change

— With assighnment statements: (first a float, then a string)
score=0.0
score = “incomplete”

In a “statically typed” language like C++, the type cannot change. It
is stated at the start of the program and never changes.

In Python, it’s less confusing to readers and writers if each variable
has ONE type. It gets a type when created; you should stick to that
type for the life of the variable in the program.

One common style: include the type in the variable name
— Like “user_Ist” or “name_str” or “hours_int”

Basic Arithmetic

The expression on the right hand side of the
assignment operator can be an arithmetic expression.

Some arithmetic operators in Python are:
— ** (exponentiation, “raise to the power of”)
— * (multiply), / (divide)

— +, - (add and subtract)

These are listed in order from higher precedence to
lower precedence

Of course you can use parentheses to make the order
you want explicit:

total = price * (tax + 100) / 100

	CS 115 A First Look at Python
	Getting Python and WingIDE
	Structure of a Python program
	Structure of a Python program
	Documentation (Comments)
	Where to use comments
	Where to use comments
	Header Comments
	Kinds of Errors
	Syntax errors
	Syntax errors
	Semantic errors
	Semantic errors
	Run-time errors
	Run-time errors
	Fixing bugs
	Variables
	Properties of a variable
	Rules for Identifiers
	Rules for Identifiers
	The Assignment operator
	The Assignment operator
	Example of assignment: swapping
	Two Solutions to swapping
	Can variable properties change?
	Basic Arithmetic

